Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 45, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144628

RESUMO

There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing-remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood.The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood-brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Sistema Nervoso Central/patologia , Humanos , Macrófagos/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
2.
BMC Neurol ; 20(1): 33, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969132

RESUMO

BACKGROUND: Aerobic training has the potential to restore function, stimulate brain repair, and reduce inflammation in people with Multiple Sclerosis (MS). However, disability, fatigue, and heat sensitivity are major barriers to exercise for people with MS. We aimed to determine the feasibility of conducting vigorous harness-supported treadmill training in a room cooled to 16 °C (10 weeks; 3times/week) and examine the longer-term effects on markers of function, brain repair, and inflammation among those using ambulatory aids. METHODS: Ten participants (9 females) aged 29 to 74 years with an Expanded Disability Status Scale ranging from 6 to 7 underwent training (40 to 65% heart rate reserve) starting at 80% self-selected walking speed. Feasibility of conducting vigorous training was assessed using a checklist, which included attendance rates, number of missed appointments, reasons for not attending, adverse events, safety hazards during training, reasons for dropout, tolerance to training load, subjective reporting of symptom worsening during and after exercise, and physiological responses to exercise. Functional outcomes were assessed before, after, and 3 months after training. Walking ability was measured using Timed 25 Foot Walk test and on an instrumented walkway at both fast and self-selected speeds. Fatigue was measured using fatigue/energy/vitality sub-scale of 36-Item Short-Form (SF-36) Health Survey, Fatigue Severity Scale, modified Fatigue Impact Scale. Aerobic fitness (maximal oxygen consumption) was measured using maximal graded exercise test (GXT). Quality-of-life was measured using SF-36 Health Survey. Serum levels of neurotrophin (brain-derived neurotrophic factor) and cytokine (interleukin-6) were assessed before and after GXT. RESULTS: Eight of the ten participants completed training (attendance rates ≥ 80%). No adverse events were observed. Fast walking speed (cm/s), gait quality (double-support (%)) while walking at self-selected speed, fatigue (modified Fatigue Impact Scale), fitness (maximal workload achieved during GXT), and quality-of-life (physical functioning sub-scale of SF-36) improved significantly after training, and improvements were sustained after 3-months. Improvements in fitness (maximal respiratory exchange ratio and maximal oxygen consumption during GXT) were associated with increased brain-derived neurotrophic factor and decreased interleukin-6. CONCLUSION: Vigorous cool room training is feasible and can potentially improve walking, fatigue, fitness, and quality-of-life among people with moderate to severe MS-related disability. TRIAL REGISTRATION: The study was approved by the Newfoundland and Labrador Health Research Ethics Board (reference number: 2018.088) on 11/07/2018 prior to the enrollment of first participant (retrospectively registered at ClinicalTrials.gov: NCT04066972. Registered on 26 August 2019.


Assuntos
Terapia por Exercício/métodos , Esclerose Múltipla/reabilitação , Adulto , Idoso , Temperatura Baixa , Pessoas com Deficiência , Exercício Físico , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Qualidade de Vida , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...